skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Layode O"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aliannejadi, M; Faggioli, G; Ferro, N; Vlachos, M. (Ed.)
    This work discusses the participation of CS_Morgan in the Concept Detection and Caption Prediction tasks of the ImageCLEFmedical 2023 Caption benchmark evaluation campaign. The goal of this task is to automatically identify relevant concepts and their locations in images, as well as generate coherent captions for the images. The dataset used for this task is a subset of the extended Radiology Objects in Context (ROCO) dataset. The implementation approach employed by us involved the use of pre-trained Convolutional Neural Networks (CNNs), Vision Transformer (ViT), and Text-to-Text Transfer Transformer (T5) architectures. These models were leveraged to handle the different aspects of the tasks, such as concept detection and caption generation. In the Concept Detection task, the objective was to classify multiple concepts associated with each image. We utilized several deep learning architectures with ‘sigmoid’ activation to enable multilabel classification using the Keras framework. We submitted a total of five (5) runs for this task, and the best run achieved an F1 score of 0.4834, indicating its effectiveness in detecting relevant concepts in the images. For the Caption Prediction task, we successfully submitted eight (8) runs. Our approach involved combining the ViT and T5 models to generate captions for the images. For the caption prediction task, the ranking is based on the BERTScore, and our best run achieved a score of 0.5819 based on generating captions using the fine-tuned T5 model from keywords generated using the pretrained ViT as the encoder. 
    more » « less
  2. Faggioli, G.; Ferro, N.; Hanbury, A.; Potthast, M. (Ed.)
    This paper describes the participation of Morgan_CS in both Concept Detection and Caption Prediction tasks under the ImageCLEFmedical 2022 Caption task. The task required participants to automatically identifying the presence and location of relevant concepts and composing coherent captions for the entirety of an image in a large corpus which is a subset of the extended Radiology Objects in COntext (ROCO) dataset. Our implementation is motivated by using encoder-decoder based sequence-to-sequence model for caption and concept generation using both pre-trained Text and Vision Transformers (ViTs). In addition, the Concept Detection task is also considered as a multi concept labels classification problem where several deep learning architectures with “sigmoid” activation are used to enable multilabel classification with Keras. We have successfully submitted eight runs for the Concept Detection task and four runs for the Caption Prediction task. For the Concept Detection Task, our best model achieved an F1 score of 0.3519 and for the Caption Prediction Task, our best model achieved a BLEU Score of 0.2549 while using a fusion of Transformers. 
    more » « less